

Webserver deployment on

“Amazon Web Services” using IAC tool “Terraform”

Raghavendra Angara

Department of Dev-Ops Engineering

NexiiLabs

1. Abstract

The purpose of this technical paper is to provide a solution for deployment of webserver application facing public

internet which process the user’s request by automating the entire infrastructure deployment. The process of creating,

deploying and configuring the webserver on to one of the popular cloud platforms, Amazon Web Services using Dev-

ops tool, Terraform. This technical paper will take you to a step-by-step procedure on how to automate and deploy

webserver application. This paper will cover all the technical aspects which helps to achieve webserver running on

desired network along with the security.

2. Introduction

Terraform is a simple and very powerful orchestration tool developed to provision the infrastructure for the popular

cloud platform which includes AWS, Google Cloud and Microsoft Azure. Terraform can also be used as a configuration

management tool but is best suited for orchestration (provisioning).

AWS, Amazon Web Services, the popular cloud platform today supports huge enterprise application deployments.

AWS provides secure cloud platform which offers compute, database, content delivery, storage and many more

functionalities to serve small, medium and large scale enterprise.

This paper will deep dive the reader for automating the deployment process using Terraform in AWS.

3. Work Done

3.1 Problem statement:

To Deploy an infrastructure solutions like a webserver, we require a considerable efforts of AWS architects for

configuring VPCs, subnets, routing tables, creating instances etc., these efforts are not easily repeatable and cannot

modify easily in one shot.

Also there will be me many configuration changes in the infrastructure after the deployments, any change in the

configuration may lead to the confusion and there is no way to store/track the state changes between old and new

deployments. For example a change in the number of instances, deletion/creation of snapshot, Instances name,

instances type changes etc., are not tracked and need lot of manual efforts to store the changes and restore the

configuration if required.

3.2 Proposed solution:

Terraform, an “Dev-Ops” IAC (Infrastructure as a code) tool address these issues and helps the DEV-OPS teams to

automate their infrastructure provisioning to third party cloud platforms. Terraform uses it CORE executable binary

and make RPC to communicate with terraform plugins and provision the infrastructure configuration deployments.

Terraform is divided in to two parts, Terraform CORE and Terraform Plugins. The Terraform CORE is a main executable

binary which invokes the plugins. A terraform Plugin is an implementation of provider services, which has all the

modules that are developed to provision infrastructure in a particular cloud provider Platform.

This paper will give a comprehensible view to automate a simple webserver deployment in a Virtual Private network

of a VPC.

 Note: This paper gives only a brief and simple automated template of terraform which does not cover modules

and other functions

3.3 AWS configuration:

This section covers the various resources that are required to deploy a webserver in

Amazon Web Services using “Terraform”. This complete configuration section is built

using terraform templates and executed by terraform.

 Create Virtual Private network (VPC) with CIDR range

 Create a Public subnet with any of the CIDR block range, where the webserver

will be deployed to face Internet users and handles their requests. The

webserver will be assigned with a public IP as it is facing the internet users

 Create an “internet gateway” which connects the above created VPC to the

internet.

 A routing table will be created to allow the EC2 Instances (where the

webserver is deployed) to the outside WAN network.

 A Front End server, virtual instance is created to serves as a webserver which

deployed in public subnet of a VPC.

The configuration is being deployed in any of the selected region in the Amazon

Web Services.

Note: Assuming the reader has basic understanding on Amazon Web services

AWS Resources:

Virtual Private Network

Public subnet

Route tables

Internet gateways

EC2 instance

Security Group

3.4 Terraform Configuration:

The terraform works with Terraform CORE, an executable binary by “Hasicorp” which uses the RPC calls to Terraform

plugins to provision the infrastructure on Cloud platforms.

Terraform is a declarative method of automating the infrastructure configuration completely and executes the code

for further provisioning. Terraform provides a strong, powerful and secure functions to save or restore the

configuration after the changes have being made. Terraform’s state file “.tfstate” will maintain the current state and

can be backed up using “.tfstate.backup” to retrieve the old state.

Terraform, a tool that allows the DEV-OPS team to easily change any of the configuration in the cloud using the same

terraform template and can be saved in the “.tfstate” file.

Terraform template:

A terraform template is supported with two formats “.tf” and “.tf.json”. This paper will present the template with “.tf”

format. The user will present all his/her infrastructure requirements which to be provisioned. The terraform CORE reads

the template files and download the necessary modules/provider-modules for specified providers and execute to

provision the infrastructure.

Terraform Execution:

Once the user capture all his requirements in template with “.tf” or “.tf.json” formats, the user will initialize the terraform

configuration nothing but all the templates that ends with “.tf” or “tf.json”. The command “terraform init” will read all

the templates and loads all the necessary modules and provider plugins modules to deal with particular provider in

order to provision the infrastructure.

Once the necessary modules and provider plugins are loaded, the “terraform plan” will give an overview of a planned

configuration plan.

Lastly, the command “terraform apply” will execute the planned configuration and provision the infrastructure on

specified cloud platform.

Here are some of the useful commands that are helpful to execute terraform template:

Terraform init, will initializes and load all necessary plugins with respect to the provider. It also load

modules/functions.

Terraform plan, helps to pre-check the infrastructure configuration which is about to provision.

Terraform apply, will apply the infrastructure configuration to a cloud platform based on the template prepared.

Terraform state show, will helps to understand the current configuration which is deployed using terraform template.

3.5 Infrastructure provisioning with Terraform:

This section will dive into the step-by-step procedure of creating a terraform template for deploying a webserver in

Amazon Web Services

 Terraform Provider Configuration:

Configure the provider by passing Access Key, Secret Key and region to provide authentication with the AWS Cloud.

When a terraform is initialized using “terraform init”, the required cloud provider Plugins are installed first time. The

terraform CORE execution binary will use the REST APIs and provision the infrastructure.

 Terraform Variable declaration:

Create a file “variables.tf” and declare the input variables to pass across the “main.tf” files.

provider.tf

• Provider
“aws”

Variables.tf

• Variable
declaration

Tarraform.tfvars

• Pass values to
variables

 Terraform.tfvars declaration:

The values that are declared here are passed to the variable.tf files and from there the terraform core will be

executed.

 VPC Configuration:

 Public Subnet:

 Security Group for Webserver:

 Webserver:

3.6 Deploy the infrastructure:

Once the template creation is done, use “terraform init” to load the required provider plugins and continue to check

the infrastructure to be built using “terraform plan”. Once the configuration is verified, use “terraform apply” to

deploy the infrastructure

“terraform init”

• Loads the
plugins for
respective
provider “aws”

“terraform plan”

• Plan gives the
overview of
infrastructure
to be deployed

“terraform apply”

• Deploy the
configuration
on respective
cloud platform
ie “AWS”

“terraform init”

“terraform plan”

Note; The above output is only showing the webserver instance installation as the output of this command is too

large.

“terraform apply”

Note; The above output is only showing the webserver instance installation as the output of this command is too

large.

AWS console output:

4. Conclusion:

Using an IAC tool, Terraform, infrastructure provisioning is made easy, reliable and reusable. The same template can

be used to deploy a webservers in different regions in a couple of minutes without user errors and rework. The same

template can also be used to modify the infrastructure based on the business requirements and these changes can

be saved in a state file.

5. References

Terraform:

https://www.terraform.io/intro/index.html

https://www.terraform.io/intro/getting-started/build.html

AWS:

https://aws.amazon.com/vpc

https://www.terraform.io/intro/index.html
https://www.terraform.io/intro/getting-started/build.html
https://aws.amazon.com/vpc

